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Black and Cox extend Merton's model by assuming that default actually can happen before the maturity
date. Many extensions of this model called First Passage Time model by Leland (1994), Briys and de
Varenne (1997), Brigo and Tarenghi (2004). Figure 0.1 illustrates the di�erence between Merton's model
and Black-Cox model in timing of the default.

Wiener process is continuous in time and composition of continuous functions is still continuous. We
assume A0 > L and the asset of the �rm follows GBM, i.e., dAt = µAtdt+ σAtdZt. In case you are new to
Itô's lemma, I will give the reason why the solution of At is a Geometric Brownian motion here. Applying
Itô's lemma to lnAt, we can get

d lnAt =
1

At
dAt −

1

2A2
t

(dAt)
2

=

(
µ− σ2

2

)
dt+ σdZt
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Figure 0.1. First Passage Model
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hence

At = A0 exp

((
µ− σ2

2

)
t+ σZt

)
The �rst passage time τ is de�ned by

τ = inf {t > 0 |At ≤ L}
= inf {t > 0 |At = L}

= inf

t > 0

∣∣∣∣∣∣Zt =
ln
(
At

A0

)
−
(
µ− σ2

2

)
t

σ


= inf {t > 0 |Zt = a+ bt}

We are interested in the distribution of the �rst time that a Brownian motion hits a line.

1. Brownian Hitting Times

We can start with the distribution of the �rst time Brownian motion hits a level a > 0, i.e., τa =
inf {t > 0 |Zt = a}. Two important techniques: Stopping times and MGF's and Re�ection Principle will be
applied.

Recall that a random time τ is called a stopping time if we know whether or not τ ≤ t has occurred at
time t. (It does not depend on the future). The optional sampling theorem extends the martingale property
to stopping times. It says if M is a martingale and τ and σ are two bounded stopping times with σ ≤ τ ,
then we have the following property

Mσ = E [Mτ |Fσ ]

Why boundedness is important? We can see that, in this example, σ = 0 and τ = τa

0 = Z0 6= E [Zτ |F0 ] = E [Zτ ] = E [a] = a

Recall the exponential martingales (it is obvious there is no drift term when applying Itô's lemma to Mλ
t ),

i.e.,

Mλ
t = exp

(
−1

2
λ2t+ λZt

)
, λ > 0

dMλ
t = λ ·Mλ

t dZt,M
λ
0 = 1

Because τ is not bounded, we need to apply a trick to use Optional Sampling Theorem. Consider τn =
min {τ, n}, then we have

1 = Mλ
0 = E

[
Mλ
τn

]
and this choice of M allows us to interchange expectation and limit operators, i.e.,

1 = Mλ
0 = lim

n→∞
E
[
Mλ
τn

]
= E

[
lim
n→∞

Mλ
τn

]
= E

[
Mλ
τ

]
= E

[
exp

(
−λ

2

2
τ + λZτ

)]
= exp (λa)E

[
exp

(
−λ

2

2
τ

)]
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Figure 2.1. Re�ection Principle

With obvious change of variable, we can get

E [exp (−cτ)] = exp
(
−a
√

2c
)

Therefore the probability of hitting level a at some �nite time

P (τ <∞) = lim
c→0

E [exp (−cτ)]

= lim
c→0

exp
(
−a
√

2c
)

= 1

and expectation on τ is given by ( see this via MGF of τ)

E [τ ] = − d

dc
E
[
e−cτ

]
c=0

= − d

dc
exp

(
−a
√

2c
)
c=0

= ∞

This phenomenon can be interpreted as: Z always hits a, but it might take a very long time to get there.

2. Reflection Principle

Personally I love the re�ection principle so much. The very famous Ballot problem can be easily solved
with this technique. If we start at Z0 = 0 and τ is the �rst passage time to reach some positive level a,
apparently we get

P (τ ≤ t) = P
(

max
0≤s≤t

Zs ≥ a
)

= 2P (Zt ≥ a) = 2Φ

(
−a√
t

)
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If we di�erentiate, we get the hitting time distribution

fa (t) =
a√

2π · t3
exp

(
−a

2

2t

)
For a < 0 case, just replace a in the above with |a|, i.e.,

fa (t) =
|a|√

2π · t3
exp

(
−a

2

2t

)

3. Hitting Time Distribution to a Line

We can do the following transformation:

τ = inf {t > 0 |Zt = a+ bt}
= inf {t > 0 |Zt − bt = a}
= inf {t > 0 |Wt = a}

where Z is a BM w.r.t. P and it su�ces to �nd a Q such that W is a BM w.r.t. Q
Girsanov Transformation says

dQ
dP

∣∣∣Ft
= M b

t = exp
(
− b

2

2 t+ bZt

)
dQ
dP

∣∣∣Ft
= exp

(
b2

2 t− bZt
)

= exp
(
− b

2

2 t− bWt

)
where W is a Q-Brownian motion.

We can conclude that

P (τ ≤ t) = EP
[
I{τ≤t}

]
= EQ

[
I{τ≤t} · exp

(
−b

2

2
t− bWt

)]
= EQ

[
I{τ≤t} · exp

(
−b

2

2
(t− τ)− b (Wt −Wτ )

)
· exp

(
−b

2

2
τ − bWτ

)]
= EQ

[
I{τ≤t} · exp

(
−b

2

2
τ − bWτ

)]
= e−baEQ

[
I{τ≤t} · exp

(
−b

2

2
τ

)]
now we can get the density of the �rst hitting time to the line as the following

ga,b (t) =
|a|√

2π · t3
exp

(
− (a+ bt)

2

2t

)
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Thus if we let t tend to in�nity, the probability of hitting the line within a �nite time is

P (τ <∞) = lim
t→∞

P (τ ≤ t)

= lim
t→∞

e−baEQ

[
I{τ≤t} · exp

(
−b

2

2
τ

)]
= e−baEQ

[
exp

(
−b

2

2
τ

)]
= e−ba · exp

(
− |a|

√
b2
)

= exp (−ab− |ab|)
In conclusion, if a and b have the same sign, this probability is less than 1 otherwise it is equal to 1.
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